Murzuq District
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
Wessels, David R, Knigge, David M, Papa, Samuele, Valperga, Riccardo, Vadgama, Sharvaree, Gavves, Efstratios, Bekkers, Erik J
Recently, Neural Fields have emerged as a powerful modelling paradigm to represent continuous signals. In a conditional neural field, a field is represented by a latent variable that conditions the NeF, whose parametrisation is otherwise shared over an entire dataset. We propose Equivariant Neural Fields based on cross attention transformers, in which NeFs are conditioned on a geometric conditioning variable, a latent point cloud, that enables an equivariant decoding from latent to field. Our equivariant approach induces a steerability property by which both field and latent are grounded in geometry and amenable to transformation laws if the field transforms, the latent represents transforms accordingly and vice versa. Crucially, the equivariance relation ensures that the latent is capable of (1) representing geometric patterns faitfhully, allowing for geometric reasoning in latent space, (2) weightsharing over spatially similar patterns, allowing for efficient learning of datasets of fields. These main properties are validated using classification experiments and a verification of the capability of fitting entire datasets, in comparison to other non-equivariant NeF approaches. We further validate the potential of ENFs by demonstrate unique local field editing properties.
Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field Crop Yield Prediction
Mena, Francisco, Pathak, Deepak, Najjar, Hiba, Sanchez, Cristhian, Helber, Patrick, Bischke, Benjamin, Habelitz, Peter, Miranda, Miro, Siddamsetty, Jayanth, Nuske, Marlon, Charfuelan, Marcela, Arenas, Diego, Vollmer, Michaela, Dengel, Andreas
Accurate crop yield prediction is of utmost importance for informed decision-making in agriculture, aiding farmers, and industry stakeholders. However, this task is complex and depends on multiple factors, such as environmental conditions, soil properties, and management practices. Combining heterogeneous data views poses a fusion challenge, like identifying the view-specific contribution to the predictive task. We present a novel multi-view learning approach to predict crop yield for different crops (soybean, wheat, rapeseed) and regions (Argentina, Uruguay, and Germany). Our multi-view input data includes multi-spectral optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season, complemented by static features like soil properties and topographic information. To effectively fuse the data, we introduce a Multi-view Gated Fusion (MVGF) model, comprising dedicated view-encoders and a Gated Unit (GU) module. The view-encoders handle the heterogeneity of data sources with varying temporal resolutions by learning a view-specific representation. These representations are adaptively fused via a weighted sum. The fusion weights are computed for each sample by the GU using a concatenation of the view-representations. The MVGF model is trained at sub-field level with 10 m resolution pixels. Our evaluations show that the MVGF outperforms conventional models on the same task, achieving the best results by incorporating all the data sources, unlike the usual fusion results in the literature. For Argentina, the MVGF model achieves an R2 value of 0.68 at sub-field yield prediction, while at field level evaluation (comparing field averages), it reaches around 0.80 across different countries. The GU module learned different weights based on the country and crop-type, aligning with the variable significance of each data source to the prediction task.
nerf2nerf: Pairwise Registration of Neural Radiance Fields
Goli, Lily, Rebain, Daniel, Sabour, Sara, Garg, Animesh, Tagliasacchi, Andrea
We introduce a technique for pairwise registration of neural fields that extends classical optimization-based local registration (i.e. ICP) to operate on Neural Radiance Fields (NeRF) -- neural 3D scene representations trained from collections of calibrated images. NeRF does not decompose illumination and color, so to make registration invariant to illumination, we introduce the concept of a ''surface field'' -- a field distilled from a pre-trained NeRF model that measures the likelihood of a point being on the surface of an object. We then cast nerf2nerf registration as a robust optimization that iteratively seeks a rigid transformation that aligns the surface fields of the two scenes. We evaluate the effectiveness of our technique by introducing a dataset of pre-trained NeRF scenes -- our synthetic scenes enable quantitative evaluations and comparisons to classical registration techniques, while our real scenes demonstrate the validity of our technique in real-world scenarios. Additional results available at: https://nerf2nerf.github.io
Drone strike by Khalifa Hifter's forces on south Libyan town kills at least 43, official says
TRIPOLI โ A drone airstrike by eastern Libyan forces on the southern Libyan town of Murzuq has killed at least 43 people, a local official said on Monday. The attack is the second major airstrike blamed on the eastern Libyan National Army (LNA) forces loyal to Khalifa Hifter after at least 44 migrants were killed in June when a detention center in a suburb of the capital Tripoli was hit. The LNA confirmed a strike late on Sunday on Murzuq, but denied it had targeted any civilians. The LNA had also denied it had hit the detention center but acknowledged increased air strikes on the capital. The internationally recognized government based in Tripoli opposing Hifter said dozens were killed and wounded in Murzuq.
WorkinOttawa.ca
Ottawa-based Artificial Intelligence (AI) Software Companies Land Major Investments In May of this year Google's AlphaGo A.I. beat the world's best'Go' player. It was a match to be remembered: a turning point in science and technology. The winning moment showcased the recent (and immense) advancements made in AI and contributed to the excitement surrounding this high-tech field - a field that has the world looking north. Canada has been recognized as a global leader of artificial intelligence; in June, the highly coveted business magazine company, Forbes, published an article validating the AI revolution happening in Canada. Today Canada shows the potential for industry monopolization.
Catastrophic Interference in Human Motor Learning
Brashers-Krug, Tom, Shadmehr, Reza, Todorov, Emanuel
Biological sensorimotor systems are not static maps that transform input (sensory information) into output (motor behavior). Evidence frommany lines of research suggests that their representations are plastic, experience-dependent entities. While this plasticity is essential for flexible behavior, it presents the nervous system with difficult organizational challenges. If the sensorimotor system adapts itself to perform well under one set of circumstances, will it then perform poorly when placed in an environment with different demands (negative transfer)? Will a later experience-dependent change undo the benefits of previous learning (catastrophic interference)?
Catastrophic Interference in Human Motor Learning
Brashers-Krug, Tom, Shadmehr, Reza, Todorov, Emanuel
Biological sensorimotor systems are not static maps that transform input (sensory information) into output (motor behavior). Evidence from many lines of research suggests that their representations are plastic, experience-dependent entities. While this plasticity is essential for flexible behavior, it presents the nervous system with difficult organizational challenges. If the sensorimotor system adapts itself to perform well under one set of circumstances, will it then perform poorly when placed in an environment with different demands (negative transfer)? Will a later experience-dependent change undo the benefits of previous learning (catastrophic interference)?